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CHAPTER 1. GENERAL INTRODUCTION 
 Recently, the natural and organic markets have exploded in popularity amongst 

consumers and have driven meat processors to develop preservative free products. Because 

of concerns regarding the formation of carcinogenic compounds called nitrosamines, nitrite is 

one of the preservatives not allowed in natural and organic meat products. Nitrite is 

particularly important in cured meat products because of the unique flavor, color, and 

inhibition of the pathogen Clostridum botulinum. In order to create a product without 

synthetic nitrite and still provide the same unique characteristics listed above, processors 

have turned to natural compounds such as celery juice.  

 Celery juice, along with other vegetables, contain high amounts of nitrate. With the 

appropriate conditions and starter cultures, the nitrate can be converted to nitrite. Currently, 

manufacturers of the nitrate-rich celery juice have developed a product that pre-converts the 

nitrate to nitrite. This allows the processers to skip the incubation step and directly add the 

pre-converted concentrate to the meat block. However, with inclusion percentages of the 

celery juice ranging between 0.2-0.4%, increased pathogen growth (C.perfrigens & Listeria 

monocytogenes) has been observed when compared to traditionally cured products.  

 L. monocytogenes has recently been a prominent concern to the food industry because 

of its ability to survive refrigeration temperatures and contaminate ready-to-eat foods. Since 

consumers do not necessarily always heat treat ready-to-eat foods, they easily can fall victim 

to this organism if the product is contaminated. The reason this organism is highly 

scrutinized, is the fact that a large percentage of the individuals who contract listeriosis, 

result in death.  With continued recalls within the meat industry, more research is needed to 

better understand the effects that naturally cured products have on L. monocytogenes. 
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Thesis Organization 

 This thesis is organized into four chapters. The first chapter encompasses a general 

introduction to the main topics discussed in the thesis. The second chapter contains a 

literature review on pertinent topics related to the research within the thesis. The third 

chapter entails the manuscript entitled “The effect of pH and nitrite concentration on the 

antimicrobial impact of celery juice compared with sodium nitrite on Listeria monocytogenes 

on restructured ham.” The fourth chapter is a general summary of the research.  
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CHAPTER 2. LITERATURE REVIEW  

History of Nitrite and Nitrate 
 The exact discovery of curing by whom is unknown to this day, but considerable 

history has shed light on the approximate period of time curing practices were in use (Pegg & 

Shahidi, 2000). Preceding the curing process was the use of salt as a meat preservative dating 

back to 1600 BC in the Jewish Kingdom, China, Babylonia, and Samaria (Jensen, 1953). 

There they learned that covering meat in salt extended the shelf-life significantly compared 

to meat without a coating of salt (Pegg & Shahidi, 2000). The meat was able to maintain its 

quality due to the effect of salt decreasing the available water, thus limiting microbe growth. 

Along with the drying effect of salt came an unappealing gray color seen in the meat (Pegg & 

Shahidi, 2000). It quickly became apparent when using particular types of salt, the 

development of a reddish color was observed, thus eliminating the gray color outcome. This 

was due to the fact that the source of salt contained “saltpeter” (potassium nitrate) or what we 

call sodium nitrate today (Binkerd & Kolari, 1975). Instead of having a salt source that was 

strictly salt, these sources were adulterated with nitrate. When introduced to a meat system 

the nitrate would be reduced to nitrite, which resulted in a red color, unique flavor, and 

extended shelf life associated with cured meats. 

Functions of Nitrite and Nitrate 

Color 

The typical red color found within cured meat products is due mainly to nitrite and 

not nitrate. Both Kisskalt (1899) and Lehmann (1899) gave evidence in their studies that 

nitrite was indeed responsible for creating the red color found in processed meats. Two years 

later, a scientist by the name of Haldane studied the cause of the unique red color in cured 
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meats and determined that the pigment nitrosylhemoglobin (NOHb) was converted to 

nitrosylhemochromogen during the heating process (Haldane, 1901). This conversion was 

determined to be solely responsible for giving the red appearance in cooked cured meats.  

Hoagland reconfirmed this in his studies and went on to explain that the reduction of nitrate 

to nitrite is critical for forming NOHb (Hoagland, 1908). The chemistry behind this reaction 

reduces nitrate to nitrite, which in turn creates nitric oxide. The nitric oxide then attaches 

itself to the heme of the hemoglobin (cooked cured meats) or myoglobin (uncooked cured 

meats) to create the red color seen in the final product (Cassens et al., 1979; Pegg & Shahidi, 

2000). Based on this information, nitrite began to be added directly to meat blocks instead of 

nitrate in the early 1900’s (Pegg & Shahidi, 2000).   

Flavor 

 Lipid oxidation contributes greatly to meat flavor deterioration (MFD) and warmed-

over flavor (WOF) found in meats (Shahidi, 1992). The formation of tasteless primary 

products from lipid oxidation, such as hydroperoxides, forms secondary products through 

their degradation such as aldehydes, acids, alkanes, alkenes, esters, etc (Shahidi, 1992). 

Aldehydes in particular are responsible for MFD and WOF (Shahidi, 1992; Toldra et al., 

2009). It is common knowledge that unsaturated fatty acids have increased susceptibility to 

lipid oxidation, and with increased amounts of these fatty acids in meat, faster rates of 

degradation are found. In a study by Cross and Ziegler (1965), they found that when nitrite 

was used in the formulation there were decreased amounts of aldehyde formation, which 

indicated nitrite was an effective antioxidant. Along with decreased aldehyde formation, 

studies have shown that lower concentration of esters are found in nitrate/nitrite added 
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products (Flores et al., 1998). Barbieri et al. (1992) and Parolari (1996) denoted the large 

ester formation in Italian ham was due to a lack of nitrate/nitrite added to the formulation. 

Like aldehydes, esters contribute to the aged meat flavor, which if present in large amounts, 

can create undesirable flavors (Barbieri et al., 1992). Because nitrite retards lipid oxidation, it 

contributes to the cured meat flavor by retarding WOF and MFD (rancidity) from occurring.  

However, many researchers have suggested that it is not only nitrite that produces the cured 

flavor but a combination of nitrite and other volatiles produced from the complex 

environment of meat (Toldra et al., 2009). Since the meat system is so multifaceted, the exact 

compound responsible for the cured flavor remains unknown.  

Lipid oxidation 

 It is well known that lipid oxidation is one of the main contributors to deterioration in 

meat and poultry products. Nitrite far exceeds any other antioxidant in delaying the onset of 

rancidity and warmed over flavors. In 1980, researchers compared prominent antioxidants 

[butylated hydroxytoluene (BHT) and citric acid] to varying degrees (50 ppm , 200 ppm, 500 

ppm) of nitrite treatments (McDonald et al., 1980). They found the reduction in thiobarbituric 

acid (TBA) to be superior to the other antioxidants at any concentration of nitrite. Other 

studies indicated that at low concentrations (as low as 20 ppm) nitrite was still significantly 

effective at reducing TBA values (Morrissey & Tichivangana, 1985; Al-Shuibi & Al-

Abdullah, 2002).  Sebranek (2009) suggested that the effect of nitrite was due to its ability to 

create nitric oxide, which then would bind itself to the heme group and create nitriso- and 

nitrosyl- compounds that had antioxidant capabilities.  Since, nitrite is so effective, the 

United States Department of Agriculture (USDA) has prohibited the use of synthetic 
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antioxidants in cured products (Sindelar & Milkowski, 2011). One exception to the rule is 

dry and semidry sausages. 

Microbiological implications 

Clostridium botulinum 

 Nitrite not only contributes to meat color and flavor characteristics, but also provides 

antimicrobial capabilities within meat products. When it comes to gram-positive and gram-

negative bacteria, nitrite is an effective antimicrobial, however, yeasts and molds are 

unaffected by nitrites’ presence (Tompkin, 2005).  Most commonly associated as nitrite’s 

antimicrobial target is Clostridium botulinum.  This organism is of particular importance 

because of the harmful toxins it produces and when those are ingested by unknowing 

consumers, detrimental symptoms such as nausea, vomiting, paralysis of muscles, double 

vision are typical, and in severe cases, death occurs (Pegg & Shahidi, 2000). Low incidence 

of C. botulinum toxin production in cured meats is largely due to the addition of nitrite to 

these meat systems. Speculations of the exact mechanism which allows nitrite to inhibit C. 

botulinum are as follows: 1) formation of substance derived by nitrite reactions with meat 

compounds, 2) nitrite is an oxidant or reductant to intracellular enzymes, 3) nitrite interrupts 

C. botulium metabolism by making less iron available, and 4) nitrite reacts with cell 

membranes which minimizes transport of substances essential for C. botulinum metabolism 

(Sofos et al., 1979; Benedict, 1980).  However, after reviewing many studies, conclusions on 

the exact mechanism of how nitrite inhibits C. botulinum is still inconclusive.  To put the 

importance of nitrite in preventing C. botulinum in prospective, an article that was printed in 

2001 stated that since 1899 (when direct nitrite use increased) there were 51 home-processed 
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meat outbreaks, and of those 51, 43 were from uncured meat products (Archer, 2001; Pierson 

& Smooth, 1982). 

Clostridium perfringens 

Clostridium perfringens is a spore-forming, gram-positive organism (Montville & 

Matthews, 2005). When inadequate heating or cooling occurs, spores are formed, which may 

result in illness when consumed. The spores cause diarrhea and cramp-type symptoms by 

attaching themselves to the villi within the intestinal tract (Montville & Matthews, 2005).  C. 

perfringens is especially problematic within foodservice type operations because of the large 

amounts of food that are prepared. The problem arises when improper cooling or heating of 

the product occurs and causes the food product to fall into the dangerous temperature range 

of 50°C to 15°C (for cooling) (Labbe, 1989) or into the optimal temperature range for C. 

perfringens growth, 43-45°C (Taormina & Dorsa, 2004). The amount of spores ingested 

determines the severity of the symptoms. 

In order to control the growth of the harmful spores produced from C. perfringens, 

the U.S. Food Safety and Inspection Service (FSIS) created stabilization guidelines for 

processors to follow (USDA, 1999). According to the guidelines, “all ready-to-eat meat and 

poultry products must reach an internal temperature between 54.4°C and 26.7°C within 1.5 

hours and reach an internal temperature between 26.7°C and 4.4°C within an additional 5 

hours after being thermally processed (6.5 hours total cooling time)” (USDA, 1999). If the 

products contain a minimum of 100 ppm nitrite, “the internal temperature must be between 

54.4°C and 26.7°C within 5 hours and be between 26.7°C and 7.2°C in an additional 10 

hours of being thermally processed (15 hours total cooling time)” (USDA, 1999). Another 
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means to control the spore formation of C. perfringens is to add nitrite to the meat or poultry 

product. It has been proven in multiple experiments that nitrite effectively inhibits C. 

perfringens (Perigo & Roberts, 1968; Sauter et al., 1977). More recent work has suggested 

that nitrite blocks the sulfhydryl sites within C. perfringens, which explains why nitrite is 

able to administer it’s bacteriostatic effect on the organism (Tompkin, 2005). 

Listeria monocytogenes 

Along with C. perfringens inhibition, nitrite has been found to control Listeria 

monocytogenes growth (Duffy et al., 1994; Ngutter & Donnelly, 2003).  Listeria 

monocytogenes has become a hot topic of concern for meat processors recently due to its 

ability to withstand an adverse environment like refrigeration temperatures as well as 

contamination of ready-to-eat meats (Lungu et al., 2009). The inhibition and control of this 

organism has become the primary and emerging focus within the industry and academia. As a 

result, the focus of the work in this thesis is on L. monocytogenes in “uncured, no nitrate or 

nitrite added” processed meats. 

Listeria monocytogenes is a gram positive organism that also facilitates facultative 

anaerobic and non-spore forming characteristics (Wagner & McLauchlin, 2008; Lungu et al., 

2009). It was first discovered in 1926 in the United Kingdom within laboratory rodents 

(Murray et al., 1926). In 1936, the implications of this bacterium became evident when its 

infection, listeriosis, caused abortions in pregnant women and meningitis in adults (Gray & 

Killinger, 1966). Populations that are immunocompromised such as pregnant women, 

children, and the elderly are especially prone to listeriosis (Liu, 2008). Upon contracting 

listeriosis 20-30% of the cases result in death (Doganay, 2003).  Its ability to withstand non-
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optimal environments, such as refrigeration temperatures, makes this organism very 

challenging to control in food processing plants. Ready-to Eat (RTE) meats are of particular 

concern because these products do not require additional heat treatment by the consumers 

once purchased from the grocery store. These meats have already been heat treated by the 

manufacturer, but cross-contamination of slicers or temperature abuse, can reintroduce L. 

monocytogenes that might have otherwise been killed at the thermal processing step (Reij & 

Den Aantrekker, 2004). Not only is listeriosis a public health problem, but there can also be 

devastating economical outcomes for the vitality of meat manufacturers upon its outbreak. 

Growth factors 

Listeria monocytogenes is very problematic to food processers for many reasons. 

First, its psychrophillic nature allows it to grow at refrigeration temperatures (Wagner & 

McLauchlin, 2008). It can also survive as low as 0˚C and as high as 45˚C, but prefers a 

temperature range comprised of 30-37˚C (Liu, 2008). Optimal pH for this organism is 7.1 

and can range from 3.0-9.6 (Lungu et al., 2009). RTE meats are of particular concern because 

of their high water activity (Aw>0.92) and L. monocytogenes’ capability of surviving salt 

concentrations up to 10% (Wagner & McLauchlin, 2008). For optimal growth L. 

monocytogenes needs to consume riboflavin, thiamine, thioctic acid, amino acids and 

carbohydrates (mainly glucose) (Liu, 2008; Lungu et al., 2009). Since, meat is comprised of 

many of these nutrients, it is evident why L. monocytogenes can thrive in meat products.  

Outbreaks 

 The reality of the dangers L. monocytogenes imposes on the human population are 

well known. In 1998, 100 cases of listeriosis were caused by contamination of hot dogs 
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within the United States (Evans et al., 2004). In the same year, another outbreak occurred 

with frankfurters, and of 108 cases, it caused 14 deaths and 4 miscarriages/stillbirths (Mead 

et al., 2006).  Between the years 1996-2000, 60% of all recalls were implemented due to L. 

monocytogenes adulteration (Wong et al., 2000).  Even with increased control and 

preventative measures taken in previous years, the cantaloupe outbreak in 2011 reminded us 

we still have obstacles to overcome in both the food and meat industry. A total of 146 cases, 

40 deaths, and 1 miscarriage occurred in 28 states (CDC, 2011).  With increasing incidences 

manufacturers as well as consumers have expressed their concern and because of this, the 

prevention of listeriosis has become a prominent priority. 

Prevention and Control 

  Pre-requisite programs 

 As previously discussed, avoiding outbreaks is crucial, and to do so requires the 

proper execution of prevention protocols. Pre-requisite programs such as Good 

Manufacturing Practices (GMP) and Standard Sanitation Operating Procedures (SSOP) are 

effective means of reducing contamination (Robbins & McSwane, 1994). Since, poor 

personnel hygiene is one of the most common causes of food-borne illness infections, these 

programs offer efficient control steps by implementing proper sanitation techniques for food 

handlers (hand washing, etc.) (Robbins & McSwane, 1994). Along with excellent personnel 

hygiene practices, sanitation of equipment is another essential component to the success of 

the pre-requisite programs. RTE meats are especially vulnerable to recontamination from 

slicers, knives, peeling and other food contact surfaces after they have exited the thermal 

processing step (Reij & Den Aantrekker, 2004). Since 1971, manufactures have instituted 
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HACCP (Hazard Analysis and Critical Control Points) programs as a means to control food 

borne pathogens (DHEW, 1971). To regulate the meat industry even further, the U.S. 

Department of Agriculture Food Safety and Inspection Service (USDA-FSIS) implemented a 

zero-tolerance policy for L. monocytogenes in 1980 (USDA, 2003). Even with all these 

preventative programs installed, a combination of programs and new intervention methods, 

such as natural nitrite sources, are needed to fully inhibit L. monocytogenes. 

  Organic acid salts 

 Recently, an increased demand for products deemed “natural” or “organic” have led 

producers to look into effective natural antimicrobials as alternatives to commonly used 

synthetic counterparts. Within meat products, it has been demonstrated by numerous studies 

that organic acids provide antilisterial effects (Mbandi & Shelef, 2002; Porto, et al., 2002; Lu 

et al., 2005). Within those studies, dipping and inclusion within the meat batter have been 

prominent methodologies of incorporating the organic salts. Various forms of diacetate and 

lactate are the most commonly used organic salts within Ready-To-Eat (RTE) meat products 

(Theron & Lues, 2007). Both diacetate and lactate have a synergistic effect on L. 

monocytogenes when in combination with each other or another organic salt (Samelis et al., 

2005; Thompson et al., 2008). Thompson et al. (2008) found that sodium diacetate is more 

effective in combination with sodium lactate then when either is alone. The industry 

commonly incorporates lactates between 1.5% and 3.0% which then can be added by itself or 

in combination with sodium diacetate at 0.125% to 0.25% (Thompson et al., 2008; Tompkin, 

2002). Although, organic acid salts have shown to be very effective in reducing L. 

monocytogenes growth, they lack the ability to provide initial lethality to the organism 
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(Porto-Fett et al., 2010). It has been demonstated by Porto-Fett, et al. (2010) that in addition 

to potassium lactate and sodium diacetate, lauric arginate applied after peeling provided an 

effective solution that delivered both suppression and initial lethality of listeria on 

frankfurters. Through the use of organic salts, concern has been continuing to mount, because 

of the possibility that acid-tolerant foodborne pathogens could occur (Quintavalla & Vicini, 

2002). By adding the organic acid salts, the pH lowers, which in turn could give rise to the 

acid tolerance response (ATR) by the microorganism (Theron & Lues, 2007). In some cases 

the organism would then become resistant to heat (Ryu et al., 1999), osmosis, and salt (Leyer 

& Johnson, 1993), which is of great concern to the processor. 

  Nitrite 

 It is common knowledge that nitrite is an effective antimicrobial in regards to C. 

botulinum, but it is also effective against L. monocytogenes as well.  Many studies have 

determined that the addition of nitrite does in fact reduce L. monocytogenes growth 

(Buchanan et al., 1989; McClure et al, 1991; Schlyter et al., 1993). Duffy et al. (1994) 

determined that when sodium nitrite was combined with sodium ascorbate, the L. 

monocytogenes growth was significantly reduced by increasing the concentration of residual 

nitrite. Residual nitrite has been shown to effect the growth of L. monocytogenes. Without 

enough ingoing nitrite added to the meat product, the residual nitrite concentration is not 

sufficient to protect against this ambiguous organism. Numerous studies have indicated that 

low concentrations of ingoing nitrite (e.g. 30 ppm) are inadequate (Buchanan et al., 1989; 

McClure et al., 1991; Schlyter et al., 1993). While reviewing the studies it became evident 

that pH directly affected nitrite’s listericidal ability. The growth of L. monocytogenes for the 
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treatment combinations of nitrite and pH 5.3 or below were not detected in the McClure et al. 

(1991) study, thus rendering this combination superior. Nitrite treatments with a pH of 6.0 or 

above failed to inhibit or suppress growth (McClure et al., 1991). Other factors such as, 

vacuum packaging, high salt (NaCl) concentrations, and low refrigeration temperatures all 

contribute to enhancing nitrites effect on L. monocytogenes (Tompkin, 1983). 

Regulations of Nitrite and Nitrate 
 The method used in the curing process dictates the maximum allowable ingoing 

nitrite and nitrate amounts. For comminuted product (bologna, salami, etc.), 156 parts per 

million (ppm) is the maximum sodium nitrite addition based on the green weight of the meat 

block (USDA, 1995).  When using nitrate in these products the maximum quantity is 1718 

ppm (USDA, 1995). For immersion and massaged curing, 200 ppm sodium nitrite is the 

maximum allowed concentration and when using nitrate, the maximum concentration is 700 

ppm. Dry curing limits are 625 ppm and 2187 ppm for nitrite and nitrate, which are based on 

the green weight of the product. The nitrite or nitrate would be applied directly to the surface 

of the meat product (country ham, prosciutto, etc.) and dried for an extended period of time. 

It is important to keep in mind that the United States Department of Agriculture (USDA) has 

mandated that all products considered cured and labeled “Keep Refrigerated” must have a 

minimum of 120 ppm ingoing nitrite. However, if the processor can verify an effective 

alternative to providing food safety through a different preservation process (thermal 

processing, pH control, moisture control), they are allowed to fall below 120 ppm (USDA, 

1995). 
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 Since the discovery of nitrosamine formation in bacon and its link to cancer, bacon 

has unique nitrite inclusion limits. For pumped and/or massaged bacon without the skin, 120 

ppm ingoing sodium nitrite is required. However, USDA requires that 550 ppm of sodium 

ascorbate or sodium erythorbate to be included to minimize the amount of residual nitrite 

produced by the cure, thus minimizing the nitrosamine production. For immersion cured 

bacon without skin, the maximum ingoing nitrite concentration is 120 ppm. Dry cured bacon 

without skin allows up to 200 ppm of nitrite that can be added during the process. When the 

skin is present in either pumped/messaged, immersed, or dry cured bacon, the maximum 

limits of ingoing nitrite and sodium erythorbate or sodium ascorbate need to be adjusted 

according to a 10% reduction (USDA, 1995). The 10% reduction is based on the skin 

comprising approximately 10% of the pork bellies weight. Since, the skin barely absorbs any 

nitrite or curing accelerators the reduction must be made to represent the actual weight of 

meat that is retaining nitrite and the accelerators. USDA has prohibited any use of nitrate in 

bacon products due to the risk of increased nitrosamine formation (USDA, 1995). 

Health Benefits of Nitrites and Nitrates 
 Nitrites and nitrates are commonly deemed synthetic by nature and are not considered 

natural substances. This misconception has largely been fueled by epidemiological studies 

indicating that all dietary nitrites and nitrates cause cancer. However, the general public is 

unaware of the fact that fruits and leafy green vegetables contain nitrate. The high amount of 

vegetables consumed in the Mediterranean diet has been thought to have contributed to the 

reduced incidence of health diseases, such as cardiovascular disease. (Lundberg et al., 2006; 

Hord et al., 2009). When compared to the average Western diet, the Mediterranean diet 
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contains up to 20 times more nitrite and nitrate (Garg, 2006). When the vegetables are 

consumed, bacteria in saliva reduces nitrate to nitrite. From here, nitrite gets converted to 

nitric oxide by the acidic environment of the stomach, and is the molecule responsible for 

many health benefits (McKnight et al., 1997). Nitric oxide homeostasis in the body has been 

shown to be key in avoiding diseases and maintaining optimal health. As humans age, the 

ability to produce nitric oxide begins to decrease and a nitric oxide deficiency occurs 

(Parthasarathy & Bryan, 2012). Since nitric oxide plays an important role in maintaining 

optimal blood pressure levels and aids in controlling the blood flow within the cardiac 

muscle (Bryan & Hord, 2010), it is evident why older individuals need an increase in dietary 

nitrite/nitrate. Studies have shown that nitrate supplementation have reduced the risk of 

hypertension, atherosclerosis, heart failure, and thrombosis (Lundberg et al., 2009; Bryan & 

Loscalzo, 2011). Along with cardiovascular improvement, nitrate consumption has also been 

proven to improve physical endurance. By increasing oxygen circulation, nitrate 

supplementation demonstrated its effect on enhancing physical performance in various 

studies (Larson et al., 2010; Lansley et al., 2011; Murphy et al., 2012). With the mounting 

research in favor of increased performance, athletes have begun to supplement themselves 

before exercise to increase the amount of nitrate available, which will aid the body in its need 

of oxygen. Even though there are many positive health outcomes to supplementing nitrate, 

caution should be taken to avoid toxicity. Nitrate, even at higher doses, is nontoxic, because 

only a small fraction of it is converted to nitrite (Lundberg et al., 2011). However, nitrates’ 

reduced form, nitrite, is very toxic at low concentrations (100-200 mg/kg) (Lundberg et al., 

2011).  A runner was reported to have taken sodium nitrite before exercise, and mistakenly 
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thought that the substance was nitrate (Lundberg et al., 2011).  In doing so he developed 

nitrite toxicity symptoms which are associated with the condition methemoglobinemia 

(Lundberg et al., 2011).  

Health Concerns Associated With Nitrites and Nitrates 
 During the 1950’s the first reports of carcinogenic nitrosamine formation were 

discovered. Nitrite was being used to preserve fish meal which was the primary feed source 

within mink farms. The farmers started to notice that the mink developed unusually high 

numbers of tumors while on this diet. It was soon discovered through a rat model experiment, 

that the nitrites that were added to the fish meal, were reacting with the free amines and 

forming the carcinogenic compounds, nitrosamines, which contributed to the tumor 

development seen in the mink (Barnes & Magee, 1954; Magee & Barnes, 1956). Fish are a 

primary example of how meat contributes to nitrosamine formation. Because of its high 

amounts of free amines, this meat system is highly susceptible to producing nitrosamines. 

Within other meat systems (cured meats) secondary amines react with nitrite, which also 

creates carcinogenic nitrosamines that were seen in the fish meal. It wasn’t until 1970 when a 

report entitled “Nitrosamines as Enviromental Carcinogens” was published that widespread 

public concern emerged (Lijinsky & Epstein, 1970). The authors reported that either 

secondary amines or nitrites must be eliminated to remove the risk of cancer formation via 

nitrosamine consumption. Extensive investigations regarding nitrosamines were conducted in 

order to determine which laws should be put into place to reduce the risk of nitrosamine 

formation. It was unveiled that specific conditions are required to produce nitrosamines, 

which include: secondary amines, presence of nitrite, neutral pH, product temperatures 
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reaching above 130˚C (Sindelar & Milkowski, 2012). Bacon became the primary cured meat 

product of concern, because of the high temperatures it was subjected to during the most 

commonly used cooking preparation; frying. To reduce the nitrosamine formation, in 1978 

regulations mandated that a maximum of 120 parts per million (ppm) of nitrite and a 

minimum of 550 ppm sodium ascorbate or sodium erythorbate be added to bacon in order to 

reduce the amount of nitrite within the product (Sindelar & Milkowski, 2012). Along with 

the bacon regulations, all cured products were subjected to maximum levels of nitrite that 

could be added to the product that would maintain a relative low risk of nitrosamine 

consumption. 

“Uncured” Processed Meats 

Recent curing alternative 

 Recently, in the last few years the organic and natural markets have exploded in 

popularity and have resulted in opportunities for meat processors to increase their earnings.  

Consumers looking for alternatives to highly “processed” foods have driven the market 

towards food products of natural and organic origin. Their concerns center around issues of 

pesticides, hormones, antibiotics, and chemical additives (Devcich et al., 2007). The 

prominent chemical additive of concern is nitrite/nitrate. With past research claiming that 

nitrites are hazardous compounds that cause an array of harmful health issues (e.g. cancer) 

has the public on defense about its use (Barnes & Magee, 1954; Lijinsky & Epstein, 1970). 

Even though many studies have shown beneficial effects of dietary nitrite/nitrate (McKnight 

et al., 1997; Lundberg, et al., 2009; Bryan & Loscalzo, 2011; Parthasarathy & Bryan, 2012) 

and USDA making extensive efforts to reduce ingoing nitrite and nitrate concentrations 
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(USDA, 1995), the overall perception of consumers is still negative. In order to call a product 

organic or natural, it must not contain sodium nitrite. To continue to produce a product that 

has the same characteristics of a conventionally cured product, manufacturers began to find 

alternatives to sodium nitrite that are deemed “natural” and “organic.” Juices derived from 

celery juice, lettuce, carrot, spinach, and beets contain detectable amounts of nitrate that can 

be added to meat products and still produce the same characteristics (color, food safety, 

flavor) typically seen in conventionally cured systems (National Academy of Sciences, 1981; 

Sebranek, 2006). Beets have high nitrate concentrations, but due to its high pigment 

concentration, USDA does not permit it in natural products because it is defined as a 

“coloring agent” (Sebranek & Bacus, 2007). Celery is the most commonly used source of 

nitrate because it has very little vegetable pigment and a mild flavor, thus limiting the impact 

on the final meat product (Sebranek & Bacus, 2007).   

Labeling 

Currently, there are two categories of uncured no-nitrate/nitrite-added meat products. 

The first is the product that is truly “uncured,” which contains absolutely no nitrate or nitrite, 

and there was no intention by the manufacturer to add it during the process (Sindelar et al., 

2007a). Without the addition of nitrate or nitrite the products create negative quality 

attributes, which negatively effects the consumers perception and acceptability of the product 

(Hustad et al., 1973; Brown et al., 1974; Froehlich et al., 1983). In addition, the absence of 

nitrate or nitrite also impacts the microbiological quality, and in turn reduces shelf life 

significantly. The second category includes products that had a source of nitrate or nitrite 

intentionally added during processing (Sindelar et al., 2007a). These products mimic the 
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characteristics of flavor, color, aroma, and sensory normally scene in conventionally cured 

meat products (Sindelar et al., 2007a). According to USDA (2010a; 2010b), the following 

must be included when labeling an “uncured” product: 

“Any product, such as frankfurters and corned beef, for which there is a standard in 
this part and to which nitrate or nitrite is permitted or required to be added, may be 
prepared without nitrate or nitrite and labeled with such standard name when 
immediately preceded with the term ‘‘Uncured’’ in the same size and style of 
lettering as the rest of such standard name: Provided, That the product is found by the 
Administrator to be similar in size, flavor, consistency, and general appearance to 
such product as commonly prepared with nitrate and nitrite….” 

 
“……which contain no nitrate or nitrite shall bear the statement ‘‘No Nitrate or 
Nitrite Added.’’ This statement shall be adjacent to the product name in lettering of 
easily readable style and at least one-half the size of the product name.” 
 
“……the statement ‘‘Not Preserved—Keep Refrigerated Below 40 °F. At All Times’’ 
unless they have been thermally processed to Fo 3 or more; they have been fermented 
or pickled to pH of 4.6 or less; or they have been dried to a water activity of 0.92 or 
less.” 

 
Most processers produce uncured products to provide meat that is of “natural” origin. To 

create a product of natural origin the processors must follow regulations set by the USDA 

(2005): 

“(1) the product does not contain any artificial flavor or flavoring, coloring 
ingredient, or chemical preservative (as defined in 21 CFR 101.22), or any other 
artificial or synthetic ingredient; and (2) the product and its ingredients are not more 
than minimally processed. Minimal processing may include: (a) those traditional 
processes used to make food edible or to preserve it or to make it safe for human 
consumption, e.g., smoking, roasting, freezing, drying, and fermenting, or (b) those 
physical processes which do not fundamentally alter the raw product and/or which 
only separate a whole, intact food into component parts.”  

 
It is important to remember that nitrate/nitrite is considered a chemical preservative and is 

not allowed in “natural” labeled products. To maintain the incorporation of nitrate and nitrite 

in natural products processors turned to compounds like celery powder, which naturally 
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contained nitrate. With the help of current processes they were able to create nitrite by adding 

starter cultures to stimulate the conversion from nitrate to nitrite. Other chemical 

preservatives such as phosphates, antioxidants (e.g. BHT), and sodium lactates are also 

prohibited from use in natural products (Sindelar et al., 2010). 

Curing process  

 During the manufacture of uncured products it is essential to have the proper amount 

of ingoing nitrate/nitrite. Manufacturers of the celery powder have suggested inclusion 

percentages based on the weight of the entire batch. 0.2%-0.4% is what is most commonly 

used when integrating celery juice into the meat product. Sindelar et al. (2007a) found that 

0.4% celery juice in frankfurters did not emit negative sensory (aroma, flavor) characteristics 

that would be associated with the vegetable additive. However, when they incorporated the 

celery juice into a ham product at 0.35%, the sensory panelists were able to detect vegetable 

flavor and aroma of the celery powder (Sindelar et al., 2007b).  Based on these results it is 

important to keep the type of product you are producing in mind when determining the 

percentage of celery powder to use. An equilibrium of enough ingoing nitrate/nitrite and 

vegetable off flavors must be maintained with each process. When using celery powder in its 

nitrate form, processing of that meat product must include an incubation step. The nitrate 

within the celery powder is converted to nitrite using starter cultures, such as Staphylococcus 

carnosus (Sindelar et al., 2010). Temperature and time become crucial for optimal 

conversion within the product. The optimal temperature for nitrite reductase activity is when 

the internal temperature of the product reaches between 90-100˚F. The incubation step can 

last anywhere between 1-2 hours, depending on the diameter of the product (Sindelar et al., 
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2010). When producing a frankfurter the incubation period is 120 minutes compared to 90 

minutes for smoked sausage (Sindelar et al., 2010). Since the frankfurter has a smaller 

diameter, more time must be given to the product to convert the nitrate to nitrite before it is 

thermally processed. Since, the diameter is small, the amount of time it takes to reach the 

ultimate cooking temperature is much shorter than a larger diameter product (smoked 

sausage). If not given enough time, the starter culture will be killed before it completes an 

adequate conversion; thus reducing the nitrite present.  

 Processors became disgruntled by having to wait 1-2 hours for the conversion to take 

place. So, the producers of the celery powder developed a pre-converted nitrite product. 

Now, instead of waiting for the incubation step to be completed the processors are able to 

add the pre-converted celery powder directly to the meat, and are immediately able to 

thermally process after preparation. The developers of the pre-converted nitrite created a 

process that allowed them to conduct the incubation step in their facilities and manufacture 

the converted powder as a one-step addition similar to conventional nitrite’s inclusion. By 

doing so, the accuracy of ingoing nitrite was improved and celery powder products had 

higher ingoing nitrite concentrations than previously seen.  

Challenges 

A major controversy pertaining to uncured meat products is how they are labeled. As 

stated previously, USDA mandates that any uncured product must state that no nitrates or 

nitrites are added. To many in the meat industry, this is a false statement and is misleading to 

the consumers. They believe that they are not consuming nitrates/nitrites, when in fact they 

are. The only difference is that the nitrates and nitrites are coming from natural forms found 
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in vegetables. With the increasing demand of this product category, there has been a rise in 

concern with the misleading information on the label. Currently, USDA is considering 

revising uncured labeling to provide a more accurate representation of these products.  

Perhaps even more importantly than labeling issues are concerns pertaining to the 

safety of uncured processed meats. Even though there are similarities to overall product 

qualities between no-nitrate/nitrite-added uncured and conventionally cured products, 

questions have been raised about whether or not the no-nitrate/nitrite-added products do in 

fact provide the same microbiological safety as conventionally cured products. Studies have 

found that the no-nitrate/nitrite-added uncured products were subpar in reducing 

microbiological growth when compared to conventional treatments (Sindelar, 2006; Wanless 

et al., 2010; Schrader, 2010; Sullivan et al., 2012).  This is attributed to lower ingoing nitrite 

then conventional treatments, which contributes to lower residual nitrite concentrations 

(Sindelar et al., 2010).  Without enough residual nitrite, it creates an environment suitable for 

microbiological invasion, thus reducing the shelf life and safety of the product. Current pre-

converted celery juice powders contain 10,000-15,000 ppm nitrite (Sindelar et al., 2010). 

Only 1% of celery juice powder is nitrite (Djeri, 2010), compared to conventional cure that is 

67% nitrite. In order to have the same effectiveness, more celery juice powder must be added 

to the formulation. However, by increasing the amount added, the concern for increased 

“vegetable” flavor arises, which is perceived negatively by consumers. Recently, the 

manufactures of celery juice powders have developed processes that allow them to increase 

the nitrite concentrations without increasing the vegetable off-flavor.  
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Other possible reasons for the increase in microbial growth could be attributed to the 

composition of celery juice. Since it is a concentrate, many different components exist within 

the powder. Djeri (2010) analyzed the celery juice powder and indicated that 85% was dry 

matter (proteins, fibers, carbohydrates, minerals). Any one of these components could react 

either in a positive or negative way towards the nitric oxide formation. These components 

could also contribute to the high pH associated with celery juice. Typically, a pH range of 

8.5-10 is seen with celery juice powders. It is important to note that nitrite’s effectiveness 

relies heavily on pH. According to Tarr (1941), a pH at or above 7 inhibits nitrites’ 

microbiological effectiveness. The lower the pH, the more reactive nitrite becomes and 

produces more nitric oxide, which is demonstrated in the following equation.  

NO2  + H+  2HNO2         N2O3 + H2O  N2O3          NO2 + NO 

Increasing the amount of nitric oxide produced allows it to be used for microbiological 

inhibition of Clostridium botulinum and suppression of Listeria monocytogenes growth 

(Perigo & Roberts, 1968; (McClure et al, 1991). A decrease in pH by as little as 0.2 pH units, 

can cause the rate of the curing reaction to double (Sebranek, 1979).  Previous research 

conducted in our laboratory has observed higher pHs within the final meat product when 

celery juice was the primary treatment (Myers, 2012). This has potential to significantly alter 

the effectiveness of nitrite as an antimicrobial agent. Reduced antimicrobial effectiveness is 

of particular concern relative to L. monocytogenes, because this organism has been shown to 

be prevalent in the environment and can easily contaminate ready-to-eat processed meats.  

Consequently, the objective of this thesis was to compare the celery juice concentrate to 

conventional nitrite using the same nitrite concentrations, and evaluate whether the other 
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components present in celery juice affect the impact of nitrite on L. monocytogenes. Because 

of the well-known impact of pH on nitrite reactions, pH was included as a variable in 

assessing the effects of celery juice and conventional nitrite concentrations on L. 

monocytogenes growth.  
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Abstract 
Increasing consumer concerns of harmful preservatives have intensified consumers’ 

demand for natural and organic alternatives. In response to this demand, uncured or no-

nitrate-or-nitrite-added meat products which utilize celery juice concentrates as an alternative 

to sodium nitrite, have emerged on the market to replace conventional nitrite sources. The 

objective of this study was to evaluate the effect of celery juice pH for the impact of nitrite 

on L. monocytogenes growth. In addition, equal concentrations of nitrite in celery juice and 

conventional nitrite were evaluated to determine the impact of nitrite concentration from 

these sources on L. monocytogenes growth. These objectives were assessed using both a 

broth and ham system. Celery juice (CJ) was less effective than the conventional nitrite in the 

broth study at 100 ppm nitrite concentration but in the ham experiment the CJ treatments at 

both 100 and 200 ppm resulted in similar growth of L. monocytogenes (p>0.05) compared to 

their counterparts 100 and 200 ppm sodium nitrite. Adjusting the pH of the celery juice 

proved to be more effective at suppressing L. monocytogenes growth at 200 ppm than 100 

ppm in the ham. No differences in growth (p>0.05) were found between the unadjusted 100 
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ppm celery juice (pH~9.2) and adjusted 100 ppm celery juice (pH~6.0) in either the broth or 

ham study. Color measurements of the ham indicated that all the CJ treatments were darker 

(lower L*) and more yellow (higher b*) than the sodium nitrite treatments. As concentration 

increased within the CJ treatments the L* became significantly lower (p<0.05) and b* values 

became significantly (p<0.05) greater. Overall, similar redness (a*) values were seen in both 

the CJ and sodium nitrite treatments. Residual nitrite concentrations were similar for both the 

100 and 200 ppm treatments in the ham study, except for the adjusted (pH~ 6.3) 200 ppm CJ 

treatment which had significantly less (p<0.05) residual nitrite than the unadjusted (pH~6.6) 

200 ppm CJ and 200 ppm sodium nitrite treatments. 

Introduction 
For centuries nitrate and nitrite have been used extensively in preserving meat 

products. Accidental discovery of these curing agents probably occurred during the 

traditional salting of meat dating back to 1600 BC (Jenson, 1953). Specific types of salt that 

were adulterated with nitrate developed a reddish color, which lead to what is commonly 

seen in cured meats today (Pegg & Shahidi, 2000). Other characteristics such as distinct 

flavors, decreased lipid oxidation, and inhibition of bacteria growth also contribute to the 

uniqueness of cured products (Sindelar & Milkowski, 2011).  

However, concerns emerged in the 1950’s relating to the safety of nitrate and nitrite 

inclusion in meat products. Studies indicated that free amines in herring meal were reacting 

with nitrite to form carcinogenic compounds called nitrosamines (Barnes & Magee, 1954; 

Magee & Barnes, 1956). In response to the nitrosamine concern, the United States 

Department of Agriculture (USDA) enforced maximum inclusion concentrations of nitrite in 
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all cured meat products that are still effective today (USDA, 1995). These maximum levels 

are strictly adhered to and have reduced the risk of nitrosamine production (Sindelar & 

Milkowski, 2012). Recently, new research has indicated that nitric oxide homeostasis in the 

body is critical for maintaining optimal blood pressure levels and controlling the blood flow 

of cardiac muscles (Bryan & Hord, 2010). This research, along with others, has clearly 

shown that dietary nitrate can be beneficial to an individual’s overall health; especially for 

aging adults (McKnight et al., 1997; Parthasarathy & Bryan, 2012). Thus, nitrite in food is 

currently viewed by many in a much more positive light. 

Regardless, consumers are apprehensive about the use of chemical preservatives, such 

as nitrate and nitrite, and this is driving consumers to seek alternative food products in 

natural and organic markets. In doing so, organic sales alone have risen from $1 billion in 

1990 to $26.7 billion in 2010 (Organic Trade Association, 2011). To meet the needs of these 

consumers meat manufactures have created “no-nitrate-or-nitrite-added” or “uncured” 

labeled meat products that qualify to be labeled as natural or organic. In order to produce a 

product with the same characteristics seen in a conventionally cured product, manufacturers 

began using vegetable juice alternatives that contained high concentrations of nitrate. This 

allows the manufacturers to comply with the natural and organic labeling regulations 

(USDA, 2005). Celery juice concentrate is prominently used by the meat industry for this 

purpose because it has very little vegetable pigment and a mild flavor which minimizes the 

“vegetable” flavor sometimes perceived in the final meat product (Sebranek & Bacus, 2007).  

Originally, celery juice powder was first available in its nitrate form. Before processing, the 

celery juice powders would have to undergo a time-consuming incubation step where a 
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nitrate-reducing starter culture would be added to reduce nitrate to nitrite. Further 

developments created a pre-converted celery juice containing nitrite that eliminated the wait 

time of the incubation step and allowed direct addition during processing. Current pre-

converted celery juice powders contain 10,000-15,000 ppm nitrite and are the most 

commonly used celery juice powder used today (Sindelar et al., 2010).  

Listeria monocytogenes has become a hot topic of concern for meat processors 

recently due to its contamination of ready-to-eat meats and ability to withstand an adverse 

environment like refrigeration temperatures (Lungu et al., 2009). In 1936, the implications of 

this bacterium first became evident when its infection, listeriosis, caused abortions in 

pregnant women and meningitis in adults (Gray & Killinger, 1966). Populations that are 

immunocompromised such as pregnant women, children, and the elderly are especially prone 

to listeriosis (Liu, 2008). Even though this organism is not the most prevalent of the 

foodborne pathogens (Scallan et al., 2011), it has devastating consequences, since 20-30% of 

those contracting listeriosis result in death (Doganay, 2003). Schrader (2010) analyzed eight 

commercial brands of no-nitrate-or-nitrite-added frankfurters and found that five were less 

effective in reducing L. monocytogenes growth compared to conventionally cured brands. 

Myers (2012) also observed an increase in growth of L. monocytogenes on the no-nitrate-or-

nitrite-added products and speculated that it could be attributed to the elevated pH observed 

in these products. Typically, celery juice concentrate has a pH ranging from 8.5-10 and may 

impact meat product pH as a result. It is important to note that nitrite’s effectiveness relies 

heavily on pH (Tompkin, 2005). According to Tarr (1941), a pH at or above 7 inhibits 

nitrites’ microbiological effectiveness. By reducing the pH, more nitric oxide is produced and 
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results in an increase in L. monocytogenes suppression (McClure et al, 1991). Reduced 

antimicrobial effectiveness is of particular concern relative to L. monocytogenes, because this 

organism has been shown to be prevalent in the environment and can easily contaminate 

ready-to-eat processed meats.  Consequently, the objective of this study was to evaluate the 

impact of pH on the effectiveness of nitrite in celery juice for the suppression of  L. 

monocytogenes growth on restructured ham products. In addition, the celery juice 

concentrate was compared to conventional nitrite using the same nitrite concentrations to 

evaluate whether the various components present in the celery juice affect the impact of 

nitrite on L. monocytogenes.  

Materials and Methods 

Broth Study 

 Broth preparation 

 Trypticase soy broth containing 0.6% yeast extract (TSBYE) (Difco, Becton, Dickson 

and Company, Sparks, MD., U.S.A.) was chosen for its neutral pH (~ 7.2) and its ability to 

support Listeria monocytogenes growth. Two groups of TSBYE were made. One received a 

pH adjustment using 1M hydrochloric acid to reduce the pH of the broth to 5.8. The pH of 

5.8 was chosen because it best represents a typical meat system pH. The other group did not 

receive a pH adjustment (pH = ~ 7.2). These broths were then used to prepare experimental 

treatments for incubation with L. monocytogenes (Table 1).  

Sample preparation  

 Two controls were created for each TSBYE adjusted group (Unadjusted = ~7.4, 

Adjusted = ~ 5.8) by adding distilled water as a treatment. The pre-converted celery juice 
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(VegStable 504, Florida Food Products, Eustis, FL) treatments consisted of two 100 ppm 

treatments, one unadjusted for pH prior to use and one adjusted (Unadjusted pH = ~9.2, 

Adjusted pH = ~6.0). The celery juice concentrate was added to distilled water to obtain 100 

ppm nitrite concentration. 10 grams of citric acid (Fisher Scientific, Waltham, MA) was 

mixed with 90 ml of distilled water to obtain a 10% solution and then was added accordingly 

to reduce the pH of the adjusted celery juice treatment to ~6.0. Two ml of each treatment, 

along with 2 ml of the L. monocytogenes inoculum were added to 16 ml of each 

corresponding TSBYE treatment. Treatments were stored in dark conditions and held at 

10°C. 

 

Table 1 

 Broth study treatment descriptions.       

Treatment   Description       

A Unadjusted control (unadjusted TSBYE + H2O) 
a
B Adjusted control (adjusted TSBYE + H2O) 

 C Unadjusted TSBYE + unadjusted 100 ppm celery juice 

*
a
D Adjusted TSBYE + adjusted 100 ppm celery juice 

a
E Adjusted TSBYE + 100 ppm sodium nitrite 

 a
F   Adjusted TSBYE + 200 ppm sodium nitrite   

*Citric acid used to adjust pH of celery juice to 6.0. 
a
Hydrochloric acid used to adjust TSBYE pH to 5.8 

Inoculum preparation and sample inoculation 

 5 strains of Listeria monocytogenes (Scott A, H7969, H7764, H7769, H7762) were 

obtained from the Food Safety Research Laboratory (FSRL) at Iowa State University. Each 

strain received a minimum of two consecutive 24 hour transfers into TSBYE and were 

incubated at 35°C. After 48 hours all 5 strains were homogenized together to create a cocktail 

(~109 cells per ml). The cocktail was diluted using 0.1% peptone water (Difco, Becton 
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Dickinson, Sparks, MD) to obtain 104 cells per ml. 2 ml of the diluted cocktail were added to 

each treatment.  

Microbiological analysis 

 Appropriate ten-fold dilutions from each homogenized experimental treatment were 

made. From each treatment’s designated dilutions, 0.1 ml was surface plated in duplicate 

onto Modified Oxford Medium supplemented with Modified Oxford Antimicrobial 

Supplement (MOX) (Difco, Becton Dickinson, Sparks, MD) on days 0, 2, 4, 6, 8, 10, and 12. 

Inoculated plates were incubated at 35°C for 48 hours. After 48 hours inoculated plates were 

counted.  

pH determination 

 pH analysis was conducted by directly inserting the pH electrode (Fisher Scientific, 

Accumet 15, Waltham, MA) into the broth for each treatment. The pH meter was calibrated 

using phosphate buffers 4.0 and 7.0. Measurements were taken on days 0, 2, 4, 6, 8, 10, and 

12. 

Ham Study  

Product manufacture 

 Seven treatments (Table 2) were produced to determine if pH and concentration of 

nitrite impacted the growth of Listeria monocytogenes in natural and conventional cured ham 

products. Two replications were conducted. Pre-converted celery juice (VegStable 504, 

Florida Food Products, Eustis, FL) was used as the natural source of nitrite. 10% solution of 

citric acid (Fisher Scientific, Waltham, MA) was added to celery juice for treatments 3 and 5 

to lower the celery juice pH to approximately 6.  
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Table 2 

        Ham study treatment formulations. 

      

Treatment* Code 

Ham 

Insides 

(kg) 

Water 

(kg) 

Salt 

(kg) 

Sugar 

(kg) 

VegStable 

504 (g) 

Sodium 

nitrite 

(g) 

Sodium 

nitrite 

(ppm)
b
 

1 Control 9.09 1.83 0.24 0.14   -  -   - 

2 

Unadj 100 

ppm CJ 9.09 1.83 0.24 0.14 75.6  - 100 

3
a
 

Adj 100 ppm 

CJ 9.09 1.83 

 

0.24 0.14 75.6  - 100 

4 

Unadj 200 

ppm CJ 9.09 1.83 0.24 0.14 151.2  - 200 

5
a
 

Adj 200 ppm 

CJ 9.09 1.83 0.24 0.14 151.2  - 200 

6 

100 ppm 

NaNO2 9.09 1.83 0.24 0.14  - 1.13 100 

7 

200 ppm 

NaNO2 9.09 1.83 0.24 0.14  - 2.27 200 

*Treatments: 1, no nitrite source added (Control); 2, unadjusted 100 ppm celery juice; 3, adjusted 

100 ppm celery juice; 4, unadjusted 200 ppm celery juice; 5, adjusted 200 ppm celery juice; 6, 100 

ppm sodium nitrite; 7, 200 ppm sodium nitrite. 
a
Treatments with addition of citric acid to obtain a pH of 6 in the celery juice. 

b
Total batch weight basis. 

All treatments were based on a total of 11.3 kg. 

 

 Hams were produced at the Iowa State University (ISU) Meat Laboratory. Pork inside 

ham muscles (semimembranosus) were received fresh from a local processor and held at 0°C. 

The ham muscles were course-ground (Biro MFG Co., Model 7.5 424852, Marblehead, 

Ohio, U.S.A.) using a 9.52 mm plate. Non-meat ingredients were added to a vacuum paddle 

mixer (Fotosa, SA., Barcelona, Spain) along with the ham muscles according to the 

formulations found in Table 2. It should be noted that USDA sodium nitrite limits are based 

on the meat block weight, but to correspond with the concentrations used in the broth 

experiment, sodium nitrite was formulated on a total batch weight basis for this experiment. 

No phosphates were included because they are not permitted ingredients for natural and 

organic labeled meat products. After mixing for 2 minutes, the meat mixture was reground 
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through a 6.35 mm plate and stuffed into a 50 mm diameter impermeable plastic casing 

(Nalobar APM 45, Kalle USA, Gurnee, IL) using a vacuum stuffer (Risco vacuum stuffer, 

Model 1040C, Stoughton Mass., U.S.A.). Impermeable casings were used to minimize the 

transfer of nitrogen oxide gases during thermal processing. Treatments were then placed into 

a single truck smokehouse (Thermal Processor, Maruer-Atmos, Reichenau, Germany) for 

thermal processing. All products reached an internal temperature of 73.9°C. Products were 

then transported to a 0°C cooler overnight to stabilize. The next day each treatment was 

sliced (Bizerba, SE 12 D, Piscataway, NJ., USA) into 11 mm thick portions weighing 

approximately 25 g + 0.5 g. For microbiology analysis, individual slices were placed in each 

bag (Cryovac Sealed Air Corporation, B2470, Duncan, SC) with an oxygen transmission rate 

of 3-6 cc at 40°F (m2, 24 hrs atm @ 40°F, 0% RD) and a water vapor transmission rate of 

0.5-0.6 g at 100°F (100% RD, 100 in2, 24 hrs) and vacuumed packaged (UV 2100, Multivac, 

Inc., Kansas City, MO). For chemical analysis, two 25 gram slices were placed together into 

one bag (Cryovac Sealed Air Corporation, B2470, Duncan, SC) and vacuum packaged. The 

microbiology samples were transported to the Food Safety Research Laboratory (FSRL) and 

stored at 4°C in a dark cooler in the Meat Laboratory. Samples for chemical analysis were 

transported to a separate 4°C dark storage cooler.  

Inoculum preparation 

 5 strains of Listeria monocytogenes (Scott A, H7969, H7764, H7769, H7762) were 

obtained from the FSRL at Iowa State University. Strains were individually grown in 

trypticase soy broth containing 0.6% yeast extract (TSBYE) (Difco, Becton, Dickson and 

Company, Sparks, MD., U.S.A.) and underwent two 24 hour transfers at 35˚C. All 5 
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transferred stains were combined to create a 50 ml cocktail (~109 cells per ml). From this 

cocktail dilutions were made using 0.1% buffered peptone water (Difco, Becton Dickson and 

Company, Sparks, MD., U.S.A.) to obtain a target inoculation of 104 cells per gram.  

Sample inoculation  

The packages containing the ham slices were aseptically opened and surface 

inoculated with 0.25 ml of the L. monocytogenes cocktail to obtain target 104 cells per gram 

for each slice of ham. Ham slices were then repackaged using the FSRL vacuum packager 

(Multivac, Model A-300/52, Kansas City, Mo., USA) and stored in a dark cooler at 4°C.  

Microbiological analysis 

On days 0, 3, 7, 10, 14, 21, 28, and 35, one inoculated 25 g sample from each 

treatment was aseptically removed from its packaging and placed into a 7.5 inch x 12 inch 

WhirlPakTM filter bag (VWR International, Radnor, PA) along with 99 ml of buffered 

peptone water (Difco, Becton Dickinson, Sparks, MD). It was then homogenized (Stomacher 

400, Seward Medical, London, UK) on the normal setting for 60 seconds. Following 

homogenization, appropriate ten-fold serial dilutions were made using 0.1% buffered peptone 

water. Designated dilutions of 0.1 ml were surface plated in duplicate on MOX (Difco, 

Becton Dickinson, Sparks, MD). Inoculated plates were incubated at 35°C for 48 hours. 

Immediately following incubation the inoculated plates were counted. 

pH determination 

 The pH meter (Inlab Solids Pro probe; MultiSeven pH meter, 92 Metler Toledo Inc, 

Columbus, OH) was calibrated using 4.0, 7.0, and 10.0 phosphate buffers. A 9:1 water: slurry 
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was used to determine the pH of the ham samples on days 0, 3, 7, 10, 14, 21, 28, and 35. All 

measurements were done in duplicate.  

Color analysis 

 Color was analyzed using the HunterLab LabScan XE spectrocolorimeter 

(HunterLab, Reston, VA). A port size of 3 cm and a viewing area of 2.54 cm were used along 

with Illuminant A and 10° standard observer. The instrument was standardized by covering 

the white standard (X= 80.45, Y= 85.37, Z= 90.79) with saran wrap (SC Johnson & Sons, 

Racine, WI) to account for the saran wrap used on the samples while taking measurements. 

Four measurements (CIE L*, a*, and b*) were taken randomly for each treatment on days 0, 

3, 7, 10, 14, 21, 28, and 35.  

Residual nitrite 

 Samples from color analysis were then ground and homogenized using a food 

processor (KitchenAid, Model KFP715, St Joseph, MI). Residual nitrite was determined 

according to AOAC method 973.31 (AOAC, 1990c) on days 0, 3, 7, 10, 14, 21, 28, and 35 

and expressed as sodium nitrite. All measurements were done in duplicate.  

Water activity 

 Samples were analyzed with AquaLab 4TE water activity meter (Decagon Devices 

Inc., Pullman, Wash., U.S.A.) on day 0. The 0.76 and 1.00 standards were used to calibrate 

the instrument. All measurements were conducted in duplicate.  

Proximate analysis 

 Moisture (AOAC, 1990b), crude protein (AOAC, 1993), and crude fat (AOAC, 

1990a) were analyzed in duplicate for each treatment on day 0.  
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Statistical analysis 

 For the broth and ham experiments, statistical analysis was conducted using a 

randomized complete block design including replication, treatment, day and treatment x day 

in the model as fixed block effects. Measurements were analyzed using the statement proc 

glimmix with the Statistical Analysis System (SAS 9.2, SAS Institute Inc., Cary, NC, 2008). 

Due to the significant interaction between treatment and day, treatment means were 

compared for each day resulting in all pairwise comparisons calculations. Tukey multiple 

comparison adjustment was used to determine the pairwise comparisons. For moisture, fat, 

protein and water activity in the ham study, the proc glm statement was used to determine 

differences amongst means. In both experiments, significant differences were denoted with a 

p<0.05. 

Results and Discussion 

Broth Study 

Listeria monocytogenes growth and pH 

 Table 3 and Fig. 1 illustrate the differences between treatments found for growth of L. 

monocytogenes in broth over the 12 day period. On days 0 and 2 there were no significant 

differences (p>0.05) amongst treatments. As expected the unadjusted control (pH~7.3) and 

adjusted control (pH~6.1) broth treatments had similar (p>0.05) growth throughout the entire 

study and resulted in greater growth (p<0.05) than all other treatments for days 4-12. This 

confirms that the addition of nitrite regardless of the source (celery juice or sodium nitrite) 

significantly affects the growth of L. monocytogenes. No differences (p>0.05) in growth were 

found between treatment C (unadjusted TSBYE + unadjusted 100 ppm CJ, pH 7.6) and D 
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(adjusted TSBYE + adjusted 100 ppm CJ, pH 6.2). In addition, these treatments also had 

statistically different (p<0.05) pH’s, where treatment D maintained a lower pH (6.20 – 6.44) 

than treatment C (7.60 – 6.95) throughout the entire study (Table 4). Because, the pH’s are 

different, this experiment suggests that there is no difference in the antimicrobial effect of 

nitrite against L. monocytogenes within this pH range of 6.2 – 7.6.  No differences (p>0.05) 

between treatment D (adjusted TSBYE + adjusted 100 ppm celery juice) and treatment E 

(adjusted TSBYE + 100 ppm sodium nitrite, pH 6.10 – 6.11) were observed between days 0 

and 8. On day 10 and 12, significantly higher numbers of L. monocytogenes were observed 

for the celery juice treatment (treatment D) compared to the sodium nitrite treatment 

(treatment E). Because the pH’s of treatments D and E do not differ (Table 4), it appears that, 

when compared in broth, the celery juice may be less effective than sodium nitrite at the 

same nitrite concentration. In this experiment, sodium nitrite at both 100 ppm (treatment E) 

and 200 ppm (treatment F) were superior to the other treatments for suppressing L. 

monocytogenes growth. Treatment F (200 ppm sodium nitrite) had the lowest growth 

compared to all other treatments on days 8-12, again confirming that nitrite concentration 

affects the antimicrobial impact of nitrite against L. monocytogenes.   
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Table 3 

Least square means for the interaction of treatment and day for Listeria 

monocytogenes
1
 growth in broth study 

Treatment
*
 Day 0  Day 2 Day 4 Day 6 Day 8 Day 10 Day 12 

A 4.00
a
 4.60

a
 6.10

a
 7.35

a
 8.75

a
 9.75

a
 10.15

a
 

B 3.90
a
 4.45

a
 5.85

a
 7.15

a
 8.35

a
 9.30

a
 9.65

a
 

C 4.00
a
 4.10

a
 4.60

b
 6.05

b
 7.25

b
 8.05

b
 8.45

b
 

D 3.95
a
 4.15

a
 4.90

b
 5.60

b
 6.65

bc
 7.60

b
 8.20

b
 

E 3.95
a
 4.00

a
 4.65

b
 5.25

bc
 5.85

c
 6.55

c
 7.10

c
 

F 3.90
a
 3.95

a
 4.20

b
 4.50

c
 4.75

d
 4.95

d
 5.25

d
 

SEM
2
 = 0.303             

*Treatments: A, unadjusted TSBYE + distilled H2O (unadjusted control); B, adjusted TSBYE + distilled H2O 

(adjusted control); C, unadjusted TSBYE + unadjusted 100 ppm celery juice; D, adjusted TSBYE + adjusted 100 

ppm celery juice; E, adjusted TSBYE + 100 ppm sodium nitrite; F, adjusted TSBYE + 200 ppm sodium nitrite. 
1
Listeria monocytogenes growth recorded as log CFU/ml. 

2
SEM = standard error of the means. 

a-d
Means in same column that have different superscripts are significantly different (p<0.05). 

 

 
Fig. 1. Least square means of L. monocytogenes (log CFU/ml) growth amongst broth  
treatments after 104 log CFU/ml inoculation held at 10˚C for 12 days. 
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 Throughout the 12 days of this experiment, both sodium nitrite (treatments E & F) 

treatments had statistically similar (p>0.05) pH’s. This demonstrates that the concentrations 

of sodium nitrite used in this experiment did not affect the pH of the broth environment for 

adjusted TSBYE. However, as shown in table 4, treatment C (unadjusted TSBYE + 

unadjusted 100 ppm celery juice) had a higher pH (p<0.05) than all other treatments 

including treatment A (unadjusted TSBYE control) on days 4-12, which suggests that the 

growth of the microorganisms in the broth may have decreased the pH in the unadjusted 

TSBYE without added nitrite. While not statistically different from treatment A at days 0-2, 

it is noteworthy that treatment C had a numerically higher pH compared to all other 

treatments on each day.  

Table 4 

Least square means for the interaction of treatment and day for pH in broth study. 

Treatment* Day 0 Day 2 Day 4 Day 6 Day 8 Day 10 Day 12 

A 7.32
a
 7.32

a
 7.31

b
 7.22

b
 7.10

b
 6.78

b
 6.06

bc
 

B 6.10
b
 6.12

b
 6.12

c
 6.10

c
 6.17

c
 5.86

d
 5.65

c
 

C 7.60
a
 7.72

a
 7.79

a
 7.81

a
 7.80

a
 7.54

a
 6.95

a
 

D 6.20
b
 6.30

b
 6.38

c
 6.41

c
 6.38

c
 6.36

bc
 6.44

b
 

E 6.10
b
 6.12

b
 6.13

c
 6.12

c
 6.11

c
 6.05

cd
 6.02

bc
 

F 6.09
b
 6.12

b
 6.13

c
 6.12

c
 6.12

c
 6.11

cd
 6.11

b
 

SEM
1
 = 0.150             

*Treatments: A, unadjusted TSBYE + distilled H2O (unadjusted control); B, adjusted TSBYE + distilled H2O 

(adjusted control); C, unadjusted TSBYE + unadjusted 100 ppm celery juice; D, adjusted TSBYE + adjusted 100 

ppm celery juice; E, adjusted TSBYE + 100 ppm sodium nitrite; F, adjusted TSBYE + 200 ppm sodium nitrite. 
1
SEM = standard error of the means. 

a-d
Means in same column that have different superscripts are significantly different (p<0.05). 

Ham Study 

Listeria monocytogenes growth and pH 

 Table 5 and Fig. 2 show the least square means of L. monocytogenes growth for all 

treatments on each day. Significant differences (p>0.05) amongst treatments were not 
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detected until day 7. As expected, the control (no nitrite source) had significantly (p<0.05) 

greater numbers of L. monocytogenes than all other treatments for days 10-35. 

Table 5 

        Least square means for the interaction of treatment and day on Listeria monocytogenes
1
 growth 

in ham study 

Treatment* Day 0 Day 3 Day 7 Day 10 Day 14 Day 21 Day 28 Day 35 

1 3.60
a
 3.75

a
 4.55

a
 5.30

a
 6.00

a
 7.80

a
 8.45

a
 9.25

a
 

2 3.75
a
 3.60

a
 3.75

b
 4.30

b
 4.70

b
 5.85

b
 6.45

b
 7.15

b
 

3 3.75
a
 3.65

a
 3.90

ab
 4.10

b
 4.55

b
 5.30

bc
 6.05

bc
 6.70

bc
 

4 3.80
a
 3.80

a
 3.75

b
 4.05

b
 4.20

bc
 5.10

c
 5.70

c
 6.65

bc
 

5 3.55
a
 3.70

a
 3.65

b
 3.75

b
 3.70

c
 4.20

d
 4.75

d
 5.50

d
 

6 3.80
a
 3.75

a
 3.90

ab
 4.05

b
 4.30

bc
 5.10

c
 6.30

bc
 7.05

b
 

7 3.55
a
 3.70

a
 3.85

ab
 4.20

b
 4.20

bc
 4.85

cd
 5.70

c
 6.00

cd
 

SEM
2 

= 0.369               

*Treatments: 1, no nitrite source added (Control); 2, unadjusted 100 ppm celery juice; 3, adjusted 100 ppm 

celery juice; 4, unadjusted 200 ppm celery juice; 5, adjusted 200 ppm celery juice; 6, 100 ppm sodium nitrite; 

7, 200 ppm sodium nitrite.  
1
Listeria monocytogenes growth recorded as log CFU/g. 

2
SEM = standard error of the means. 

a-d
Means in same column that have different superscripts are significantly different (p<0.05). 

 

 

 

Fig. 2. Least square means of L. monocytogenes (log CFU/g) growth amongst ham  
treatments after 104 log CFU/g inoculation held at 4˚C for 35 days. 
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Other researchers (Duffy et al., 1994; Ngutter & Donnelly, 2003) have shown that nitrite is 

effective in suppressing L. monocytogenes growth in meat products. No differences (p>0.05) 

in growth were observed between the Unadj 100 ppm CJ (treatment 2) and Adj 100 ppm CJ 

(treatment 3). On days 0, 3, 7, 14, 21, and 35, the Adj 100 ppm CJ (treatment 3) had a 

significantly lower pH (p<0.05) than the Unadj 100 ppm CJ (treatment 2) (Table 6). Even 

though the pH’s were different for the majority of the experiment, the microbiology data 

indicates that there was no difference in the antimicrobial effect within the pH range 

observed with the 100 ppm celery juice treatments. Similar results for microbial growth were 

also noted in the broth experiment.  On days 21-35, the Adj 200 ppm CJ (treatment 5) had 

significantly (p<0.05) lower L. monocytogenes growth than the Uadj 200 ppm CJ (treatment 

4). The pH differences (p<0.05) were significant for the duration of the experiment between 

the Unadj 200 ppm CJ and Adj 200 ppm CJ treatments where the Adj 200 ppm CJ treatment 

maintained a lower pH (Table 6). Since, the concentration of nitrite for both of these 

treatments was the same, the pH difference may have affected the microbial growth 

differences observed at 200 ppm in this experiment. Looking back at the adjusted and 

unadjusted 100 ppm celery juice treatments (Table 5) where there were no differences in L. 

monocytogenes growth, it is interesting to note that the unadjusted and adjusted 200 ppm 

celery juice treatments were indeed different (p<0.05). This suggests that both pH and 

concentration of celery juice may have affected the product pH and the subsequent L. 

monocytogenes growth as observed in this experiment. 

During the 21 & 28 day time period, the Unadj 100 ppm CJ  (treatment 2) resulted in 

significantly (p<0.05) higher numbers of L. monocytogenes (Table 5) than the Unadj 200 
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ppm CJ (treatment 4), but at the end of the study (day 35) both treatments had similar 

(p>0.05) populations. During the entire study, the Unadj 200 ppm CJ treatment maintained a 

higher pH (p<0.05) than the Unadj 100 ppm CJ (Table 6).  

Table 6 

        Least square means for the interaction of treatment and day on pH in ham study. 

 Treatment* Day 0 Day 3 Day 7 Day 10 Day 14 Day 21 Day 28 Day 35 

1 6.14
de

 6.14
de

 6.14
de

 6.11
e
 6.12

d
 6.13

d
 6.08

d
 6.12

d
 

2 6.46
b
 6.45

b
 6.43

b
 6.42

b
 6.44

b
 6.44

b
 6.42

b
 6.28

bc
 

3 6.28
cd

 6.28
cd

 6.28
cd

 6.27
bcd

 6.27
cd

 6.28
c
 6.28

bc
 6.10

d
 

4 6.68
a
 6.65

a
 6.65

a
 6.63

a
 6.64

a
 6.65

a
 6.65

a
 6.64

a
 

5 6.35
bc

 6.37
bc

 6.36
bc

 6.36
bc

 6.36
bc

 6.37
bc

 6.37
b
 6.37

b
 

6 6.11
e
 6.13

e
 6.12

e
 6.13

de
 6.14

d
 6.12

d
 6.12

d
 6.16

cd
 

7 6.24
ce

 6.24
ce

 6.23
ce

 6.23
ce

 6.23
cd

 6.24
cd

 6.22
cd

 6.13
cd

 

SEM
1
 = 0.051               

*Treatments: 1, no nitrite source added (Control); 2, unadjusted 100 ppm celery juice; 3, adjusted 100 ppm 

celery juice; 4, unadjusted 200 ppm celery juice; 5, adjusted 200 ppm celery juice; 6, 100 ppm sodium nitrite; 

7, 200 ppm sodium nitrite. 
1
SEM = standard error of the means. 

a-e
Means in same column that have different superscripts are significantly different (p<0.05). 

 

This difference also suggests that the increase in concentration of celery juice may affect the 

product pH. On days 14-35, the Adj 200 ppm CJ treatment had significantly lower (p<0.05) 

numbers of L. monocytogenes growth than that of the Adj 100 ppm CJ treatment (Table 5). 

This supports the previous observations that nitrite concentration impacts L. monocytogenes 

growth. In addition, 100 ppm NaNO2 resulted in significantly greater populations of L. 

monocytogenes on day 35 compared to 200 ppm NaNO2, which reiterates the impact of 

nitrite concentration on L. monocytogenes growth. On all days except day 14, Unadj 100 ppm 

CJ, Adj 100 ppm CJ, and 100 ppm sodium nitrite were statistically similar (p>0.05). 

Ultimately, these treatments at the end of the experiment, reached the same population, 
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which suggests that, at 100 ppm nitrite, celery juice is just as effective as sodium nitrite in 

reducing L. monocytogenes growth when used at that concentration. Previous studies 

(Schrader, 2010; Jackson et al., 2011) have shown that typical usage levels of celery juice 

(0.2-0.4% if the batch weight) resulted in 20-60 ppm of ingoing nitrite and have been less 

effective in reducing L. monocytogenes and Clostridium perfringens growth than the 

traditional sodium nitrite ingoing concentrations of 120-156 ppm. The subpar performance of 

the celery juice has been attributed to the low ingoing nitrite concentrations by numerous 

other researchers. However, celery juice concentrations used in commercial products have 

remained low because of the undesirable vegetable flavor perceived at higher concentrations. 

Sindelar et al. (2007) reported that the concentration of 0.35% celery juice elicited a higher 

negative response from panelists when compared to a lower concentration of 0.20%.  In 

addition, the Adj 200 ppm celery juice (treatment 5) in this study was statistically similar 

(p>0.05) to 200 ppm NaNO2 (treatment 7) for suppression of L. monocytogenes growth on all 

days except day 28 (p<0.05), which supports the previous observations that equal nitrite 

concentrations elicits a similar antimicrobial impact on L. monocytogenes. Because, the 

Unadj 200 ppm CJ (treatment 4) was different (p<0.05) than the Adj 200 ppm CJ (treatment 

5), the results suggest that the pH adjustment in treatment 5 (Adj 200 ppm CJ) affected the 

antimicrobial impact of the celery juice. The Adj 200 ppm CJ (treatment 5) also suppressed 

growth (p<0.05) more effectively than all other treatments except treatment 7 (200 ppm 

NaNO2) on days 21 and 35. The results from this experiment suggest that at higher 

concentrations of celery juice, the antimicrobial impact of pH of the celery juice is more 

prominent, probably due to the pH effect on a greater nitrite concentration. It is likely that 
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more nitrite in the celery juice when combined with more acidic conditions, increases the 

impact of the antimicrobial activity of nitrite.  

Color analysis 

 Results for the L* color analysis of the hams across the 35 day experiment are shown 

in Table 7. On day 0, the control and 100 ppm NaNO2 treatments were similar (p>0.05), 

while all other treatments exhibited significant differences (p<0.05) in lightness. All celery 

juice treatments were darker (p<0.05) than both the NaNO2 treatments throughout the entire 

study. On all days, significant differences (p<0.05) were evident between the 100 ppm CJ 

treatments and 200 ppm CJ treatments. Results indicated that as the concentration of the 

celery juice increased, there was an increase in darkness (lower L*). This also matches the 

visual perception seen during the study.  

 Differences in a* measurements are shown in Table 8. As expected, the control had 

significantly less (p<0.05) redness than all other treatments throughout the 35 day study. On 

day 0, treatments 2, 4, 5, and 6 (Unadj 100 ppm CJ, Unadj 200 ppm CJ, Adj 200 ppm CJ, and 

100 ppm NaNO2. respectively) had statistically similar (p>0.05) redness values, while on the 

same day, 200 ppm NaNO2 (treatment 7) was significantly redder (p<0.05) than all other 

treatments. Both 100 ppm CJ treatments (treatment 2 and 3) had statistically similar redness 

(p>0.05) as 100 ppm NaNO2 (treatment 6) on days 3-35. In addition, both 200 ppm CJ 

(treatments 4 and 5) had statistically similar redness (p>0.05) as the 200 ppm NaNO2 

(treatment 7) on days 7-35. The similarities within each concentration for both the natural 

and conventional nitrite sources demonstrate that celery juice produced the same amount of 

redness as traditional nitrite for the majority of the storage time in this study.  
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Table 7 

        Least square means for the interaction of treatment and day on L* in ham study. 

 Treatment* Day 0 Day 3 Day 7 Day 10 Day 14 Day 21 Day 28 Day 35 

1 70.67
a
 70.39

a
 70.21

b
 70.30

ab
 70.33

a
 70.64

a
 70.67

a
 69.76

ab
 

2 67.33
d
 67.08

c
 67.75

c
 66.99

c
 66.76

d
 67.14

c
 67.24

c
 66.57

d
 

3 68.88
c
 67.75

c
 67.35

c
 67.68

c
 67.58

c
 67.40

c
 67.34

c
 67.62

c
 

4 65.11
f
 64.41

e
 64.11

e
 64.24

d
 64.09

f
 64.29

e
 63.78

e
 63.86

f
 

5 66.49
e
 65.60

d
 65.71

d
 64.99

d
 65.16

e
 65.36

d
 65.49

d
 65.39

e
 

6 71.45
a
 70.83

a
 71.08

a
 70.65

a
 70.28

a
 70.57

a
 70.51

ab
 70.01

a
 

7 69.78
b 

 69.35
b
 69.75

b
 69.84

b
 69.33

b
 69.02

b
 69.86

b
 69.15

b
 

SEM
1
 = 0.281               

*Treatments: 1, no nitrite source added (Control); 2, unadjusted 100 ppm celery juice; 3, adjusted 100 ppm 

celery juice; 4, unadjusted 200 ppm celery juice; 5, adjusted 200 ppm celery juice; 6, 100 ppm sodium nitrite; 

7, 200 ppm sodium nitrite. 
1
SEM = standard error of the means. 

L* = lightness on scale of 0-100. 
a-f

Means in same column that have different superscripts are significantly different (p<0.05). 

 

Table 8 

        Least square means for the interaction of treatment and day on a* in ham study. 

 Treatment* Day 0 Day 3 Day 7 Day 10 Day 14 Day 21 Day 28 Day 35 

1 12.14
d
 10.99

d
 10.83

c
 10.71

c
 10.49

c
 10.14

c
 9.94

b
 10.20

d
 

2 16.50
b
 16.80

ac
 16.24

b
 16.87

b
 16.93

ab
 16.56

b
 16.65

a
 16.72

bc
 

3 16.00
c
 16.64

bc
 16.77

a
 16.94

b
 16.77

b
 16.93

ab
 17.01

a
 16.57

c
 

4 16.32
bc

 16.64
bc

 16.97
a
 17.04

b
 17.05

ab
 16.89

ab
 16.88

a
 16.99

ac
 

5 16.53
b
 17.06

ab
 16.89

a
 17.51

a
 17.36

a
 17.24

a
 16.84

a
 17.10

ab
 

6 16.56
b
 16.56

c
 16.54

ab
 16.95

b
 16.96

ab
 16.78

b
 16.73

a
 16.93

ac
 

7 17.05
a
 17.21

a
 16.94

a
 17.10

ab
 17.24

a
 17.29

a
 17.01

a
 17.28

a
 

SEM
1
 = 0.164               

*Treatments: 1, no nitrite source added (Control); 2, unadjusted 100 ppm celery juice; 3, adjusted 100 ppm 

celery juice; 4, unadjusted 200 ppm celery juice; 5, adjusted 200 ppm celery juice; 6, 100 ppm sodium nitrite; 

7, 200 ppm sodium nitrite. 
1
SEM = standard error of the means. 

a* = redness on scale of 0-100. 
a-d

Means in same column that have different superscripts are significantly different (p<0.05). 

 

The yellowness (b*) measurements (Table 9), indicated that the celery juice 

treatments were significantly more (p<0.05) yellow than the conventional nitrite treatments 
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and the control.  Within the celery juice treatments, both the 100 ppm CJ (treatments 2 and 3) 

had significantly less (p<0.05) yellow than the 200 ppm CJ (treatments 4 and 5). This 

suggests that as the concentration of celery juice increased, there was an increase in 

yellowness in the final ham product. This is most likely due to the particulates of the plant-

derived concentrate that includes plant pigments. During days 3-10, the Adj 200 ppm CJ 

(treatment 5) was more yellow (p<0.05) than the Unadj 200 ppm CJ (treatment 4), but started 

and ended the study with similar yellow (p>0.05) values. In this case, the results suggest that 

the pH adjustment of the 200 ppm CJ may have impacted the yellowness in the final product 

at certain time periods. Both NaNO2 treatments elicited the lowest (p<0.05) amount of 

yellowness throughout the entire study when compared to the rest of the treatments.  

Table 9 

        Least square means for the interaction of treatment and day on b* in ham study. 

 Treatment* Day 0 Day 3 Day 7 Day 10 Day 14 Day 21 Day 28 Day 35 

1 13.40
d
 13.55

d
 13.77

d
 13.85

d
 13.85

c
 13.79

c
 13.76

c
 13.90

c
 

2 14.06
c
 14.22

c
 13.72

d
 14.18

cd
 14.39

b
 14.21

b
 14.36

b
 14.29

bc
 

3 14.48
b
 14.61

c
 14.44

c
 14.52

c
 14.61

b
 14.46

b
 14.54

b
 14.41

b
 

4 17.09
a
 17.01

b
 17.07

b
 17.23

b
 17.16

a
 17.18

a
 17.32

a
 16.78

a
 

5 16.98
a
 17.55

a
 17.52

a
 17.82

a
 17.49

a
 17.54

a
 17.21

a
 17.17

a
 

6 11.40
e
 11.08

e
 11.24

e
 11.35

e
 11.26

d
 11.30

d
 11.24

d
 11.18

d
 

7 11.42
e
 11.21

e
 11.04

e
 11.25

e
 11.41

d
 11.41

d
 11.19

d
 11.37

d
 

SEM
1
 = 0.145               

*Treatments: 1, no nitrite source added (Control); 2, unadjusted 100 ppm celery juice; 3, adjusted 100 ppm 

celery juice; 4, unadjusted 200 ppm celery juice; 5, adjusted 200 ppm celery juice; 6, 100 ppm sodium nitrite; 

7, 200 ppm sodium nitrite.  
1
SEM = standard error of the means. 

b* = yellowness on scale of 0-100 
a-e

Means in same column that have different superscripts are significantly different (p<0.05). 

Residual nitrite 

 Residual nitrite concentrations for all treatments throughout the shelf life of the ham 

products are represented in Table 10 and Fig. 3. As expected, the control treatment had 
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essentially no residual nitrite and was significantly lower (p<0.05) than all other treatments. 

Because it has been suggested that nitric oxide, which is derived from nitrite, may provide an 

inhibitory effect against microorganisms (Tompkin, 2005); it is no surprise that the control 

treatment had both low residual nitrite concentrations and high numbers of L. 

monocytogenes. As shown in Table 10, the Adj 200 ppm CJ (treatment 5) had significantly 

less residual nitrite (p<0.05) than that of the Unadj 200 ppm CJ (treatment 4) on all days 

except day 7. It has been shown that reduced pH speeds up the curing reaction (creates more 

nitric oxide) and as a result, less residual nitrite can be expected (Cassens et al., 1978). This 

allows more nitric oxide to become available to act as an antimicrobial. However, when 

comparing the Unadj 100 ppm CJ and Adj 100 ppm CJ treatments, there was no significant 

difference (p>0.05) found between the residual nitrite concentrations (Table 10). These 

findings correspond to no differences found between the L. monocytogenes growth for these 

treatments, which could imply that at lower concentrations of celery juice (and nitrite) the pH 

impact on nitrite effectiveness is less. Unadj 100 ppm CJ, Adj 100 ppm CJ, and 100 ppm 

NaNO2 treatments all had significantly less residual nitrite (p<0.05) than the 200 ppm nitrite 

treatments (Table 10), which demonstrates that, as the concentration of ingoing nitrite 

increases, the residual nitrite amounts also increase accordingly. Xi et al. (2011) found the 

same trend when studying different ingoing sodium nitrite concentrations. Overall, the 

residual nitrite concentrations decreased gradually during the 35 day storage period. Others 

have also reported a gradual decline of residual nitrite throughout the shelf life of meat 

products (Jantawat et al., 1993; Myers et al., 2013). Significantly higher concentrations of 

residual nitrite (p<0.05) were found in the Unadj 200 ppm CJ treatment versus the 200 ppm 
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NaNO2 treatment (Table 10). Similar results were shown in Myers et al. (2013). Those 

authors commented that it was unusual to have higher concentrations of residual nitrite that 

corresponded with increased growth of L. monocytogenes. They speculated that the celery 

juice may have provided beneficial nutrients to L. monocytogenes since 97.75% of the celery 

juice used in the experiment was composed of organic and inorganic constituents.  

Table 10 

        
Least square means for the interaction of treatment and day on residual nitrite

1 
in ham study. 

Treatment
*
 Day 0 Day 3 Day 7 Day 10 Day 14 Day 21 Day 28 Day 35 

1     3.69
d
     3.56

d
     2.51

d
     2.63

d
     1.68

e
     2.49

d
     2.85

d
     3.32

d
 

2   71.45
c
   69.24

c
   67.59

c
   64.72

c
   63.69

c
   57.36

c
   56.81

c
   51.50

c
 

3   69.72
c
   65.18

c
   60.67

c
   55.52

c
   55.25

cd
   51.09

c
   49.16

c
   40.42

c
 

4 151.09
a
 143.20

a
 128.89

a
 123.71

a
 123.93

a
 118.38

a
 115.19

a
 106.94

a
 

5 133.23
b
 122.65

b
 115.68

ab
 105.15

b
 103.99

b
   95.15

b
   87.67

b
   79.67

b
 

6   61.56
c
   62.45

c
   56.95

c
   52.34

c
   50.05

d
   46.20

c
   43.93

c
   39.62

c
 

7 122.08
b
 114.66

b
 107.68

b
   97.04

b
   95.28

b
   88.31

b
   81.15

b
   71.11

b
 

SEM
2
 =4.69                 

*Treatments: 1, no nitrite source added (Control); 2, unadjusted 100 ppm celery juice; 3, adjusted 100 ppm 

celery juice; 4, unadjusted 200 ppm celery juice; 5, adjusted 200 ppm celery juice; 6, 100 ppm sodium nitrite; 

7, 200 ppm sodium nitrite. 
1
Residual nitrite reported as ppm. 

2
SEM = standard error of the means. 

a-e
Means in same column that have different superscripts are significantly different (p<0.05). 
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Fig. 3. Least square means of residual nitrite (ppm) for the ham study treatments after 104 log 
CFU/g inoculation held at 4˚C for 35 days. 
 

Proximate analysis and Aw 

 The least square means of % moisture, % fat, % protein, and Aw are listed in Table 

11. No differences (p>0.05) were observed for % moisture, % fat, and Aw between 

treatments. Protein differences (p<0.05) were observed between the Adj 200 ppm CJ and 

both the control and 200 ppm NaNO2 treatments, and may have resulted from raw meat 

differences in the formulation between treatments or the addition of celery juice plus the 

citric acid. An explanation for the lower protein content in the Adj 200 ppm CJ treatment is 

not clear, but is unlikely to be of any practical significance since all other compositional 

properties did not differ among the treatments. 

 

 

 

 

 

    



www.manaraa.com

 58   

 

Table 11 

Proximates and water activity measurements for all ham treatments on day 0. 

Treatment
*
 Moisture (%) Fat (% ) Protein (%) Aw 

1 75.37
a
 2.66

a
 18.85

a
 0.9791

a
 

2 75.71
a
 1.98

a
 18.17

ab
 0.9778

a
 

3 75.74
a
 1.87

a
 18.27

ab
 0.9768

a
 

4 75.36
a
 1.79

a
 18.40

ab
 0.9749

a
 

5 75.51
a
 2.19

a
 17.70

b
 0.9753

a
 

6 75.64
a
 2.09

a
 18.33

ab
 0.9785

a
 

7 75.41
a
 2.41

a
 18.46

a
 0.9781

a
 

SEM
1
 0.213 0.214 0.161 0.0007 

*Treatments: 1, no nitrite source added (Control); 2, unadjusted 100 ppm celery juice; 3, adjusted 100 ppm 

celery juice; 4, unadjusted 200 ppm celery juice; 5, adjusted 200 ppm celery juice; 6, 100 ppm sodium nitrite; 

7, 200 ppm sodium nitrite.  
1
SEM = standard error of the means. 

a-b
Means in same column that have different superscripts are significantly different (p<0.05). 

 

Conclusion 
The broth experiment indicated that the pH adjustment that occurred between the two 

100 ppm celery juice treatments (unadjusted TSBYE + unadjusted CJ and adjusted TSBYE + 

adjusted CJ) did not have an antimicrobial effect on L. monocytogenes growth. The same 

results were observed for the unadjusted and adjusted 100 ppm CJ treatments within the ham 

study. Differences in L. monocytogenes growth between the 100 ppm NaNO2 and both the 

100 ppm CJ treatments demonstrated that celery juice was less effective than conventional 

nitrite at the same nitrite concentration for suppressing L. monocytogenes in the broth system. 

However, the results from the ham experiment show that at equal concentrations of nitrite, 

celery juice was as effective as the sodium nitrite treatments in the meat product. Because the 

ham experiment represents the practical application of celery juice in the meat industry, it is a 

more realistic model compared to the broth system. At the same time, the broth experiment 
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suggested that the pH impact of celery juice concentrate can affect nitrite reactions and could 

be a consideration for some product applications.  

As the concentration of the celery juice concentrate increased within the ham study, 

the pH of the ham product increased as well. When the pH adjustment was applied to the 200 

ppm CJ, there was decreased L. monocytogenes growth and lower residual nitrite 

concentrations. Even though the pH adjustment had an impact on L. monocytogenes growth 

at 200 ppm, the Adj 100 ppm CJ did not show the same effect, which could be due to the 

lesser nitrite concentration.  Similar residual nitrite concentrations and L. monocytogenes 

growth for the Unadj and Adj 100 ppm CJ treatments suggest that a larger pH reduction may 

need to be used at 100 ppm of nitrite in order to accelerate the nitric oxide production  and 

therefore reduce L. monocytogenes growth. Particulates within the celery juice concentrate, 

such as fibers, sugars, and minerals (Djeri, 2010), could also hinder the reactivity of nitrite, 

depending on the chemical properties of these components. 

 The celery juice treatments also affected ham color and as the concentration was 

increased, the hams became darker (lower L*) and more yellow (higher b*) than 

conventional treatments. This is most likely due to the particulates (fibers, sugars, and 

minerals) that are present in the celery juice. Overall, the redness (a*) values were similar for 

both the celery juice and conventional treatments at equal nitrite concentrations.   

 Future research efforts on the use of celery juice concentrate as a meat curing agent 

for natural and organic processed meats should focus on developing a more concentrated 

form of celery juice that has increased nitrite concentration, lower pH and reduced vegetable 

off-flavors in order to increase the effectiveness of the ingoing nitrite. Even though this study 
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shows that celery juice was as effective as conventional nitrite in ham at equal nitrite 

concentrations, potential pH impact of the celery juice concentrate may be of significance for 

nitrite reactions in some applications. In addition, flavor strongly impacts consumer 

acceptability of meat products, and from previous research (Sindelar et al., 2007) sensory 

panel results indicated that celery juice concentrate can impart an undesirable flavor at high 

concentrations. This would be a concern for consumer products with concentrations of celery 

juice comparable to our study which used 0.67% (100 ppm) and 1.33% (200 ppm) to reach 

the desired nitrite concentrations. 
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CHAPTER 4. GENERAL CONLUSIONS 
Natural and organic meat products have become increasingly popular to the general 

consumer for its ability to provide a preservative-free product. Nitrite is included in 

preservatives not allowed in meat products labeled natural or organic. To circumnavigate the 

legalities, manufactures have incorporated celery juice has the nitrite source in these products 

to obtain the same unique characteristics seen in conventionally cured meat products. 

However, by substituting conventional sodium nitrite with a celery juice concentrate, there 

has been less ingoing nitrite observed in the celery juice inclusion percentages used, which 

causes an increased risk of Listeria monocytogenes growth within these products. L. 

monocytogenes is of utmost concern to processors because upon its outbreak, a large 

percentage of infected individuals have fatal outcomes.  

 Although the literature indicates that celery juice included at typical levels of 0.2-

0.4% has greater growth of L. monocytogenes, this study showed that at equal concentrations 

celery juice is just as effective as sodium nitrite in ham. In addition, when the pH adjustment 

was applied to the Adj 200 ppm CJ treatment, an increased antimicrobial effect was observed 

by reduced L. monocytogenes growth. However, for both the broth and ham study, the pH 

adjustment did not have an antimicrobial impact on L. monocytogenes when applied to 100 

ppm CJ. Color analysis in the ham study indicated that as the concentration of the celery 

juice increased, the products became darker (lower L*) and more yellow (higher b*).  

 For future research, emphasis should be focused on developing a more nitrite 

concentrated form of celery juice that minimizes the vegetable flavor that is currently seen in 

higher concentrations of celery juice. Since the appearance of the celery juice treated hams 
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were darker and more yellow, sensory analysis regarding the flavor and color should be 

considered when developing a more nitrite concentrated celery juice powder.  
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